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Executive Summary

We have made a major breakthrough in the development of moment clo-
sures for modeling the transistion regime in kinetic theory. Specifically, we have
found a systematic nonperturbative derivation of a hierarchy of closed systems
of moment equations corresponding to any classical kinetic theory. The first
member of the hierarchy is the Euler system, which is based on Maxwellian
velocity distributions, while the second member is based on non-isotropic Gaus-
sian velocity distributions. The closure proceeds in two steps. The first ensures
that every member of the hierarchy is hyperbolic, has an entropy, and formally
recovers the Euler limit — fundamental properties that are lacking in previous
closures. The second involves modifying the collisional terms so that members
of the hierarchy beyond the second also recover the correct Navier-Stokes behav-
ior. The simplest such system in three spatial dimensions recovers the behavior
of the Grad “13-moment” system when the velocity distributions lie near local
Maxwellians. The closure procedure can be applied to a general class of kinetic
theories. There are a number of ongoing foolow-up projects aimed at a practical
exploitation of this advance.

In addition, we have made advances in understanding the foundations of
fluid dynamics, identified distinguished weakly compressible limits, developed
intrinsic criteria for checking the validity of compressible Navier-Stokes simula-
tions, and many other contributions to the theory of compressible fluid dynamics.

We have also gained new insights into the stability of shocks in MHD,
which comes into play at high Mach numbers. We have showed using numerical
experiments that when the ratio of the viscosities is below a critical value, inter-
mediate viscous profiles exist and their stability depends on the relative sizes of
the viscosity coefficients and the size and the type of the perturbation applied.

On another topic pertinent to the grant, the numerical study of diffraction
effects for the interaction of a weak shock with a sharp wedge we concentrated
on the resolution of the so-called von Neumann paradox. Various scenarios have
been tried over the years (since the late forties), but they did not resolve the
problem. Our numerical solution seems to support the conjecture recently put
forward by Collela and Henderson that there is a fourth wave. Our results show
that the strength of this wave is proportional to the curvature of the stem. Since
this curvature is very small, it was impossible to detect in previous physical and
numerical experiments due to the lack of sufficient resolution.
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1. Research Objectives

The proper simulation of rarefied gases presents a formidable challenge to
computational science. In situations where the gas is sufficiently dense that the
mean free path of a particle (the average distance traveled between collisions)
is much smaller than the macroscopic length scales of interest, fluid dynamical
descriptions are valid. In that case the particles will approach a local equi-
librium parameterized by so-called fluid variables (typically the mass density,
fluid velocity, and temperature) whose evolution will be governed either by the
. compressible Euler equations, which approximate the velocity distribution by a
local equilibrium, or the compressible Navier-Stokes equations, which account
for small deviations of the velocity distribution from a local equilibrium. Such
fluid dynamical equations are routinely solved numerically to effectively model
- gases in a wide variety of applications.

However, when a gas is sufficiently rarefied that the mean free path is no
longer much smaller than the macroscopic length scales, the deviation of the
velocity distribution from a local equilibrium may become large and Navier-
Stokes equations can yield momentum and energy fluxes that are inconsistent
with nonnegative distribution functions and that may even be wrong by orders
of magnitude. In that case the gas can be modeled by a kinetic theory of
dilute gases like that governed by the Boltzmann equation. The gas is then
described by single particle phase-space densities (one for each species) rather
than fluid dynamical variables and the evolution of these phase-space densities is
then governed by kinetic equations. Such equations may be effectively solved via
molecular dynamics or Monte-Carlo methods at low densities that are far outside
fluid dynamical regime. However, because of its phase-space description and
numerical stiffness, the computational cost of doing so in regimes near the fluid
dynamical limit becomes too prohibitive in both time and storage requirements
to allow for general usage. An alternative to a full kinetic description is to
use a moment closure, but these too are significantly more expensive than a
Navier-Stokes simulation.

The gap in our ability to efficiently model gases in the regime that lies be-
tween free molecular flow and fluid dynamics lies in what is called the transition
regime. One central objective of this work has been to develop models that
fail gracefully as one leaves the fluid dynamical regime. More precisely, we seek
models that properly capture the fluid dynamical regime when the mean free
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path is much smaller than the macroscopic length scales, while in the transition
regime give values for the momentum and energy fluxes (and other quantities)
that are at least consistent with the nonnegativity of the particle density, and
are thereby hopefully of the correct order of magnitude. By doing so, such mod-
els may provide a bridge over the transition regime that may be useful in the
construction of hybrid fluid /kinetic simulations.

More specifically, the intent of our work has been to explore alternative
strategies to the Chapman-Enskog procedure in order to develop a generalized
hydrodynamics. A few criteria have to be met:

1. These equations should meaningfully extend into regimes beyond that of
the Navier-Stokes equations.

o

Their mathematical structure must be robust, free from unphysical anoma-
lies.

3. They should have a reasonable complexity; if this is not the case then one
might as well be resigned to using the original Boltzmann equation.

Two such strategies have been examined: the development of flux-limited Navier-
Stokes equations and, more extensively, the closure of moment equations. The
long term goal is to make hybrid fluid/kinetic calculations more tractable.

At Mach numbers near ten ionization becomes important. We therefore
examined problems related to asymptotic and numerical studies of 2 model MHD
equation with high order effects included. The model describes asymptotically a
uni-directional MHD wave propagation near the point where three characteristic

speeds coincide and may include weak dissipative, dispersive and diffractive

effects. The main advantage of our model is in its simplicity while preserving
the essential wave characteristics of the MHD equations.

The aim of this work was to study computationally wave propagation and
interaction for problems in magnetohydrodynamics described by our model equa-
tion. The immediate goal is to study properties of singular solutions for asymp-

totic equations, namely, intermediate shock wave stability, resistive and disper-

sive perturbations of the Alfvén waves and diffraction of shock waves. The last
topic is a computational study of interaction of weak shock with the sharp wedge
by using an ENO-type scheme adopted to deal with the diffraction “wiggles”.




2. Status of the Research

2.1 Fluid Dynamics: Validity and Breakdown (Levermore)

To establish the validity of fluid dynamics from an underlying Boltzmann
equation has been considered one of the classical open problems of mathemat-
ical physics for over one hundred years. Of course, formal derivations exist for
classical fluid dynamical approximations, but that is not the same as a math-
ematically rigorous proof. Such proofs would have great value in helping to
understand the accuracy of numerical schemes for solving the Boltzmann equa-
tion. Bardos, Golse, and Levermore [3] have made a major step in this direction
for the case where the fluid limit is that of a viscous incompressible fluid. Their
starting point was the recent theory of global weak solutions of the Boltzmann
equation due to DiPerna and Lions; their goal was therefore the theory of global
weak solutions of the Navier-Stokes equations due to Leray in 1933. They con-
sidered the classical Boltzmann equation over a periodic spatial domain for a
wide class of Boltzmann collision kernels.

By using relative entropy estimates about an absolute Maxwellian, it was
shown that any properly scaled sequence of DiPerna-Lions renormalized solu-
tions of some classical Boltzmann equations has fluctuations that converge to an
infinitesimal Maxwellian with fluid variables that satisfy the incompressibility
and Boussinesq relations globally in time. Moreover, they introduced a notion
of entropic convergence and showed that if the initial fluctuations entropically
converge to an infinitesimal Maxwellian then the limiting fluid variables were
shown to satisfy a version of the Leray energy inequality for the Navier-Stokes,
again, globally in time [3].

By assuming the sequence satisfies local momentum conservation, the ap-
propriately scaled momentum densities globally are shown to converge strongly
to the solution of the Stokes equation. A similar discrete time version of this re-
sult holds for the Navier-Stokes limit with an additional mild weak compactness
assumption [3].

The utility of the concept of entropic convergence was demonstrated by
Levermore in [6]. There it was first shown, again using relative entropy es-
timates about an absolute Maxwellian, that any properly scaled sequence of
DiPerna-Lions renormalized solutions has fluctuations that converge weakly to
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a solution of the linearized Boltzmann equation. Then it was shown that, when-
ever the initial fluctuations converge entropically to an arbitrary L? initial data
of the linearized Boltzmann equation, the DiPerna-Lions fluctuations converge
entropically (and hence strongly in L!) to the unique L? solution of the lin-
earized Boltzmann equation with the given initial data. In a sense, this is an
infinitesimal uniqueness result for DiPerna-Lions solutions.

The same scalings that led to incompressible fluid dynamics from the Boltz-
mann equation in [5] where applied in [1] by Bayly, Levermore, and Passot to
derive a theory of turbulence in weakly compressible fluid flows. In that work,
two distinguished scalings were found that led to different relations between
the fluctuations of the density and the velocity fields. One of these had been
missed in some earlier literature which had based its theory on the isentropic
approximation. These relations were illustrated with careful 51mulat1ons of the
full compressible Navier-Stokes equations.

As nice as the preceding results are, they are far from what we need for
practical aerospace applications, where the fluid considered is usually very com-
pressible. Levermore, Morokoff, and Nadiga therefore developed a criteria for
monitoring the validity of the compressible Navier-Stokes approximation during
the simulation of a rarefied gas [24]. Because the Navier-Stokes equations can be
systematically recovered from the underlying kinetic description in the regime
of small mean free paths by truncating either a Hilbert or Chapman-Enskog
expansion, kinetic theory can provide the foundation for any such criterion. For
example, one could try to use the first neglected term in the Chapman-Enskog
expansion to estimate the error. That was not the approach they took. Rather,
they found a criteria based on the requirement that certain velocity moments
generated by the velocity distribution of the truncated Chapman-Enskog ex-
pansion (which is generally not nonnegative) be realizable by some nonnegative
velocity distribution. Such criteria are called moment realizability criteria. They
then generalized this approach to a more sensitive criterion which measufes the
deviations of the underlying distribution function from equilibrium. One impor-
tant aspect of these criteria is that they involve quantities that are intrinsic to
the Navier-Stokes equations. This method, based on the deviations of a 3 x 3
validity matrix from its equilibrium value of the identity, is portable and may be
applied to any Navier-Stokes simulation. They examined its utility by compar-
ing stationary planar shock profiles computed using the Navier-Stokes equations
with those computed using Monte-Carlo simulations [24].

Once one has left the regime of validity for the compressible Navier-Stokes
equations there are a number of things one might do, one of which is the de-




velopment of flux-limited Navier-Stokes equations. The key idea here is to base
the fluid dynamical closure on a family of approximate solutions that can devi-
ate considerably from local equilibria. For example, the closure of flux-limited
diffusion theory can be viewed as choosing the distribution corresponding to a
traveling wave solution of the transport equation which is consistent with the
values of both the particle density and its gradient. In the fluid dynamic context
this means constructing leading order particle distributions not only from the
fluid dynamic variables (density, velocity, and temperature), but also from their
gradients. If this is to be done in a physically consistent manner, attention must
be paid to the implied entropy dissipation rate. Even for the classical compress-
ible Navier-Stokes equations, consideration of the entropy dissipation rate tells
us that it is velocity and temperature, rather than other variables, which are
diffused. These variables are identified by being dual to the conserved densities
(mass, momentum, and energy) with respect to the entropy. If the underlying
particle distribution now depends functionally (rather than algebraically) on the
conserved densities then so will the entropy and the dual variables associated
with it.

Levermore and Wagner (8] have applied these ideas to the simple Broadwell
model. For this model the flux-limited closure can be checked against benchmark
calculations of the full kinetic equation, something that is completely out of the
question for more realistic kinetic theories. The results looked promising but
the true test will come when these ideas are applied to more realistic kinetic
equations.

2.2 Moment Closures (Levermore)

Another strategy to describe deviations from fluid dynamics is to close
systems of moment equations such as typified by the thirteen moment closure of
Grad. This strategy introduces dynamical equations for velocity moments.of the
particle distribution beyond those of the conserved mass, momentum, and energy
densities. The additional equations are not local conservation laws, but rather
local relaxation laws that include moments of the collision operator. Any closure
of this enlarged system must approximate both the higher flux moments and
the collision operator moments. These closures often use relations that are only
justified when the particle distribution is near a local equilibrium, such as Grad’s
moment truncation of the fluxes in terms of generalized Hermite polynomials
relative to the local Maxwellian, and his so-called “diagonal approximation” of
the collision operator. The resulting systems of equations involve shorter spatial-
temporal scales but retain the assumption of closeness to the local equilibria,
thereby taking on a perturbative nature.
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Such systems of moment equations present many problems that must be
faced if they are to be useful tools for simulation in the transition regime. The
most significant of these problems are:

(1) complexity due to the large number of equations,
(2) stiffness near the fluid dynamical limit,
(3) loss of realizability of its predicted moments,

(4) breakdown away from moderate regimes.

The first problem is intrinsic to this general strategy and carries a substantial
computational cost for any simulation. This problem is being mitigated by ad-
vances in supercomputers. The second is also intrinsic but Jin and Levermore
[21] showed that this problem can be resolved by a proper choice of numerical
scheme. The third problem is more serious because it means that the predicted
values of the moments can evolve to the point where they violate inequalities
that must be satisfied if they are to be realized by any nonnegative density.
This problem can be monitored by checking that the predicted moments sat-
isfy appropriate moment realizability inequalities during a simulation. The last
problem arises because such systems can dynamically become elliptic (develop
complex characteristics) and hence become ill-posed, after which the meaning
of the solution becomes suspect.

In a major new work, Levermore [23] has given a systematic nonpertur-
bative derivation of a whole hierarchy of closed systems of moment equations
corresponding to any classical kinetic theory. The first member of the hierarchy
is the Euler system, which is based on Maxwellian velocity distributions, while
the second closure is based on non-isotropic Gaussian velocity distributions. The
closure procedure has two steps. The first ensures that every member of the hi-
erarchy is hyperbolic, has an entropy, and possesses realizability of its predicted
moments, thus ensuring that, unlike the perturbative approach, difficulties such
as (3) and (4) above do not arise. Moreover, every member formally recovers
the Euler limit. The second step involves a modification of the collisional terms
that is a nonlinear generalization of the “diagonal approximation” of Grad and
which ensures and those members of the hierarchy beyond the Gaussian clo-
sure recover the correct Navier-Stokes behavior. The simplest such system in
three spatial dimensions is a “14-moment” closure which also recovers the Grad
“13-moment” system when the velocity distributions lie near local Maxwellians.

Although simple, the Gaussian closure does not recover the correct Navier-
Stokes approximation because the Gaussian densities have no heat flux, and
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therefore no heat conduction term can arise in the energy equation. However, all
members of the hierarchy above the Gaussian closure have a nontrivial heat flux
and, hence, hold out the possibility that the correct Navier-Stokes approximation
can be recovered as the first correction to the Euler equations. A general theory
of such approximations was worked out by Chen, Levermore, and Liu in [9].
Following that work, it can be shown that all such higher order closures lead
to the correct form of the Navier-Stokes stress and heat flux [23]. For realistic
collision operators the values of the viscosity and heat conduction derived from
such closures will generally be less than the correct physical values. However,
it was shown that the collision operator can be modified so as to recover the
correct physical viscosity and heat conduction by introducing a generalized BGK
model tuned so as to recover various relaxation times correctly [23]. This is the
nonlinear analog of the diagonal approximation of Grad, and it even reduces to
the Grad approximation near a local equilibrium.

The main difficulty in implementing this moment closure lies in the com-
plexity of its equation of state. For this reason, it is hoped that one might be
able to correct the Gaussian closure, which has no such complexity problem.
This is the impetus for the works of Groth and Levermore [43] and Levermore
and Morokoff [44]. The first finds transport corrections to the Gaussian Closure
based on an asymptotic expansion, while the second examines the attendant
Riemann problem. There is still much work left to be done.

This work has, before its publication, attracted the attention of researchers
a round the world. Derivative work has already been submitted to journals from
the University of Michigan group of Gambosi, Groth, Roe, and Brown. Other
work is forthcoming out of Bordeaux, France by a group led by Charrier.

Finally, in related work, Harten, Lax, Levermore, and Morokoff [22] have
extended determination of which entropy densities for the compressible Euler
equations of the form pf(o) are strictly convex (where p is the mass dénsity,
o is the specific entropy, and f is an arbitrary function) from polytropic gases
to gases with an arbitrary equation of state. Moreover, they showed that at
every state where the sound speed is positive (i.e. where the Euler equations
are hyperbolic) there exist pf(c) that are strictly convex, thereby establishing
the converse of the general fact that the existence of a strictly convex entropy
density implies hyperbolicity.




2.3 MHD Model Equations (Brio)

This work pertinent to the proposal concentrated on computational and
asymptotic studies of the MHD model equations.

In Brio and Rosenau {30, 41], and Cheng, Brio and Webb [10] the model sys-
tem describing unidirectional wave propagation was used to address the question
of whether intermediate shock waves appear in nature. This question goes back
to the beginning of MHD studies in the mid-50s, but has not yet been resolved
satisfactorily. More specifically, we have studied numerically the nonlinear sta-
bility of intermediate viscous profiles. The numerical experiments show that
when the ratio of the viscosities is below a critical value, intermediate viscous
profiles exist and their stability depends on the relative sizes of the viscosity
coefficients and the size and the type of the perturbation applied. In particular,
for fixed viscosity coefficients only one type of intermediate shock can be split
by a sufficiently large fast or slow perturbation for the coplanar 2 x 2 model
system and the rest of the intermediate shocks are stable. The 2 x 2 model
is useful for 2D MHD simulations. In the 3 x 3 case, all intermediate shocks
can be destroyed by a sufficiently large rotational perturbation. Our numerical
results indicate the following effect of dispersion (the screw-symmetric part of
the viscosity matrix due to the Hall effect). If the diffusion is small enough, the
dispersive effects may lead to the formation of rotational Alfvénic perturbations
and to the break up of the intermediate waves.

Another important observation is that an Alfvén wave under small viscosity
perturbation is transformed into a nearby intermediate wave, which, for example,
may consist of a shock followed by a rarefaction wave of the same family. This
is drastically different from a contact discontinuity in the hydrodynamic case,
which spreads out as v/Z in the presence of small viscosity. Here the spread may
be on the advection scale and may account for the difficulty in observing Alfvén
waves in a resistive medium. :

Our numerical simulations suggest an explanation of the previous experi-
mental observations and numerical results. For example, it suggests that in the
magnetosphere, intermediate shocks may be observed very rarely, since the re-
sistivity in space plasmas is small compared to the Hall effect, and large Alfvén
(rotational) waves are abundant in interplanetary space. For numerical com-
putations, it provides an explanation of why the leap-frog and Lax-Wendroff
type schemes, when used for 2D computations, contain rotational (Alfvén)
waves, while modern upwind approximation methods (like TVD, PPM, and
ENO schemes) converge to intermediate waves instead.
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Encouraged by our current and previous numerical results, several other
researchers reported experimental evidence for intermediate shock waves that
were previously disregarded as unphysical and unstable mathematical solutions
unrelated to physical reality. The results opened the door to further investi-
gations, applications, and guidelines for development of numerical schemes. In
our most recent work on this topic, we extend our study in order to include the
effects of dispersion on the intermediate shocks and Alfven waves [26, 46].

2.4 Diffraction Effects (Brio)

The second topic pertinent to the grant, is a numerical study of diffraction
effects. In Brio and Hunter [2, 4, 23, 36], using the 2D Burgers equation we
studied the problem of the interaction of a weak shock with a sharp wedge.

. In particular, we concentrated on the resolution of the so-called von Neumann

paradox for weak shock Mach reflections. The paradox stems from the analytical
result that there is no solution to the problem of three shocks meeting at a point,
whereas numerical and experimental evidence seems to contradict it. Various
scenarios have been tried over the years (since the late forties), but they did not
resolve the problem.

Our numerical solution seems to support the conjecture recently put forward
by Collela and Henderson that there is a fourth wave. Our results show that
the strength of this wave is proportional to the curvature of the stem. Since
this curvature is very small, it was impossible to detect in previous physical and
numerical experiments due to the lack of sufficient resolution. The computation
is very delicate — the diffraction acts “dispersively” by introducing wiggles that
persist under numerical viscosity in the ENO method, since the nonlinearity in
the equation is in z-direction only (diffraction is a linear global effect in the y-
direction). The addition of linear artificial viscosity in the y-direction smears the
diffractive wave and is unsatisfactory. To remedy this, further work is needed,
the new understanding and the technique emerging from this study seems to be
a useful tool in its own right.
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2.5 Quasi-Continuum Limits (Rosenau)

Our main effort was directed to explore new possible strategies to achieve
this goal of a generalized hydrodynamics. The complexity of the problem war-
rants starting with simple model for the germ idea to be explored. To this end
we studied the model of persisting random walker as a paradigm of generalized
hydrodynamics.

In the continuum limit, the unbiased, continuous time, random walk yields
the diffusion equation, which may be considered as the simplest analog of the
Navier-Stokes equations. Not surprisingly, the short wavelength spectrum of the
diffusion equation is completely different from its discrete antecedent. These
spectra cannot be expected to be the same since one dynamics is the long wave-
length limit of the other.

Now consider a correlated random walk; it is a probabilistic equivalent of a
colliding particle with a finite mass. Its evolution from a given site depends on
its history. Such a motion leads to the telegraphers equation in the continuum
(low-k) limit. This equation is free from two major difficulties of the diffusion
approximation:

1) the paradox of infinite propagation speed,
2) the linear flux-gradient relations.

The idea we explored is based on the observation that the telegrapher equa-
tion approximates the original process surprisingly well for all wavelengths. We
do not have the right to expect this to occur, yet it does. Even though the
telegrapher equation is obtained in the long-wave length limit, it reproduces
the spectrum for all wavelengths surprisingly well. In other words, a derivation
which can be justified only for small gradients leads to an equation good for .
arbitrary gradients. This fact helps one to realize that one folly of the classical
Chapman-Enskog procedure is not its expansion in small gradients, but rather
that its ordering disregards inertia. With inertia intact one expects to derive a
telegraphers type system with domain of validity extending beyond the formal
derivation [3].

In the more general area of interest to the Air Force, we have studied
interfacial instabilities in hydrodynamics. Our main effort was to develop an
amplitude equation describing the evolution and rupture of thin films, separating
two liquids of different density and viscosity [10].
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Conf. Hyperbolic Problems, Stony Brook (submitted 1994).

[26] G.M. Webb and M. Brio, Symmetries of the TDNLS Equations for Weakly
Nonlinear Dispersive MHD Waves, J. Plasma Phys. (submitted 1995).

Work Related to the General Scientific Program of the Air Force

(27] R. Camassa, D.D. Holm, and C.D. Levermore Long-Time Shallow Water
Equations with a Varying Bottom, J. Fluid Mech. (submitted 1994).

(28] P.D. Miller, N.M. Ercolani, and C.D. Levermore, Modulation Theory in the
Presence of Phase Locking, Physica D (submitted 1994).

[29] G. Cruz-Pacheco, C.D. Levermore, and B.P. Luce, Complez Ginzburg-Landau
Equations as Perturbations of Nonlinear Schrédinger Equations, Physica D
(submitted 1995).

3.3. Books or Book Chapters Published or to be Published

Work Specific to our Grant

[30] M. Brio and P. Rosenau, Stability of Shock Waves for a 3 x 3 System of
Model MAD Equations; in “Proc. 4th Int. Conf. on Hyperbolic Problems”
(Taormina, 1992), A. Donato ed., Notes on Numerical Fluid Mechanics 43
(1993), 77-83. ’

[31] C.D. Levermore, An Introduction to Kinetic Theory, in “Dynamical Sys-
tems and Probabilistic Methods for Nonlinear Waves” (AMS-SIAM Sum-
mer School, Berkeley, 20 June - 1 July 1994), P. Deift, C.D. Levermore, and
E. Wayne eds., Lect. Appl. Math. ??, AMS, Providence (1995), ?? pages.

Work Related to the General Scientific Program of the Air Force

(32] C.D. Levermore, Fluid Dynamical Limits of Discrete Kinetic Theories; in
“Macroscopic Simulations of Complex Phenomena” (NATO Advanced Study
Institute, Alghero, Italy, 15-27 July 1991), M. Mareschal and B. Holian eds.,
NATOQO ASI Series B 292, Plenum, New York (1992), 173-185.
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(33]

[34]

(35]

3.4.

(38]

P.D. Lax, C.D. Levermore, and S. Venakides, The Generation and Propa-
gation of Oscillations in Dispersive Initial- Value Problems and Their Lim-
iting Behavior in “Important Developments in Soliton Theory”, A.S. Fokas
and V.E. Zakharov eds., Springer Series in Nonlinear Dynamics, Springer-
Verlag, New York (1993), 205-241.

S. Jin, C.D. Levermore, and D.W. McLaughlin, The Behavior of Solutions
of the NLS Equation in the Semiclassical Limit, in “Singular Limits of
Dispersive Waves”, (NATO Advanced Research Workshop, Lyon, France,
8-12 July 1991), N.M. Ercolani, I.R. Gabitov, C.D. Levermore, and D. Serre
eds., NATO ASI Series B 320, Plenum, New York (1994), 173-185.

C.D. Levermore and J.G. Liu, Oscillations in Numerical Ezperiments, in
“Singular Limits of Dispersive Waves”, (NATO Advanced Research Work-
shop, Lyon, France, 8-12 July 1991), N.M. Ercolani, I.R. Gabitov, C.D.
Levermore, and D. Serre eds., NATO ASI Series B 320, Plenum, New York
(1994), 329-346. - B ‘

M. Brio and J. K. Hunter, A von Neumann reflection for the 2-D Burgers
equation, in “Fifty Years of Computational Mathematics”, W. Gautschi ed.,
AMS Proceeding of Symposia in Applied Mathematics, 48 (1994), 265-269.

C.D. Levermore and M. Oliver, The Complez Ginzburg-Landau Equation
as ¢ Model Problem, in “Dynamical Systems and Probabilistic Methods for
Nonlinear Waves” (AMS-SIAM Summer School, Berkeley, 20 June - 1 July
1994), P. Deift, C.D. Levermore, and E. Wayne eds., Lect. Appl. Math.
77, AMS, Providence (1993), 49 pages.

Work in Progress

Work Specific to our Grant

F. Golse, S. Jin and C.D. Levermore, The Convergence of Numerical Trans-
fer Schemes in Diffusive Regimes, SIAM J. Num. Anal. (to be submitted
1995).

M. Brio and J. Hunter, Numerical Study of Weak Mach Reflection near the
Triple Point. (in preparation 1995).

M. Brio, J. Hunter and D. Johnson, Canonical Equation for MHD and
Elastic Waves near the Triple Umbilic Point. (in preparation 1995).
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[41] M. Brio and P. Rosenau, Nonstrictly Hyperbolic System of Conservation
Laws with Applications to MHD Shock Waves, Preprint, (to be submitted
1995).

(42] M. Brio and G.M. Webb, Study of One-Way MHD Model Equation. (in
preparation 1995).

[43] C.P.T. Groth and C.D. Levermore, Beyond the Navier-Stokes Approzima-
tion: Transport Corrections to the Gaussian Closure, (in preparation 1995).

[44] C.D. Levermore and W.J. Morokoff, The Gaussian Moment Closure for Gas
Dynamics, (in preparation 19953).

(45] G.M. Webb, M. Brio, G.P. Zank, and T. Story, Wave- Wave Interaction in
Two Fluid Cosmic Ray Hydrodynamaics, (in preparation 1995).

[46] G.M. Webb and M. Brio, Prolongation Structures and Conservation Laws
of the TDNLS Equation, (in preparation 1995).

-“Work Related to-the General Scientific Program of the Air Force

147] S. Jin, C.D.-Levermore, and D.W. McLaughlin, The Semiclassical Limit

of the Defocusing NLS Hierarchy, Comm. Pure & Appl. Math. (to be
submitted 1995).

[48] K. Horsch and C.D. Levermore, Attractors for the Complez Ginzburg-Landau
Equation in Lyapunov Cases, Physica D (to be submitted 1995).

[49] C.D. Levermore, and J.G. Liu, Large Oscillations Arising in a Numerical
Scheme, Physica D (to be submitted 1995).

[50] C.D. Levermore, M. Oliver, and E. Titi, Global Well-Posedness for Certain
Shallow Water Equations with a Varying Bottom, Arch. Rat. Mech. &
Anal. (to be submitted 1995).

[51] N. Ercolani, S. Jin, C.D. Levermore and W. MacEvoy, The Zero Dispersion
Limit of the NLS/mKdV Hierarchy for the Non-selfadjoint ZS Operator,
preprint (1993).

[52] C.D. Levermore, M. Oliver, and E. Titi, (in preparation 1995).
[53] C. Cercignani, .M. Gamba, and C.D. Levermore, (in preparation 1995).
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4. List of Participating Professionals

4.1. Investigators

Moysey Brio
David Levermore (PI)

4.2. Consultants Supported by Our Grant
Philip Rosenau

4.3. Graduate Students Supported by Our Grant

4.3.1. Academic Year Support
§92: Warren MacEvoy, Shan Jin, Gustavo Cruz-Pacheco.
F92: Gustavo Cruz-Pacheco, Vijayabharat Lingala.
S93: Gustavo Cruz-Pacheco, Vijayabharat Lingala.
F93: Gustavo Cruz-Pacheco.
S94: Warren MacEvoy, Gustavo Cruz-Pacheco, Karla Horsch, Peter Miller.
F94: Mark Hays, Warren MacEvoy, Peter Miller, Anita Rado.

4.3.2. Summer Support
92: Gustavo Cruz-Pacheco, Shan Jin.
93: YiFen Cheng, Gustavo Cruz-Pacheco, Vijayabharat Lingala.
94: Warren MacEvoy, Peter Miller.

4.4. Postdoctoral Associates Supported by Our Grant

None.

4.5. Other Postdoctoral Associates

92-93 Barbara A. Wagner
93-94 William J. Morokoff
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5. Coupling Activities

5.1. Organizational Activities Related to the Grant

C.D. Levermore - Minisymposium Organizer, SITAM Summer Meeting, Los
Angeles, 20 July 1992, “The Reemegence of Kinetic Theory in Applica-
tions”.

C.D. Levermore — Workshop Organizer, Mesoscale Modeling Workshop,
Mathematical Sciences Research Institute, Berkeley, 2327 May 1994.

C.D. Levermore — Summer School Organizer, AMS-SIAM Summer School,
.Berkeley, 20 June - 1 July 1994, “Dynamical Systems and Probabilistic
Methods for Nonlinear Waves”.

C.D. Levermore — Minisymposium Organizer, SIAM Summer Meeting, San
- Diego, 20 July 1994, “Kinetic Theory in Applications”.

C.D. Levermore - Workshop Organizer, The Institute for Advanced Study,
Princeton, 27-31 March 1995, “Applied Kinetic Theory”.

5.2 Presentations Related to the Grant

M. Brio, Weak shock Mach reflection, Problems in Computational Fluid
Mechanics, Stonybrook, November 1991.

M. Brio, Numerical Simulations of MHD Shock Waves, 3-D PIC and MHD
Workshop, Sponsored by the Air Force Office of Scientific Research, Phillips
Laboratory, New Mexico, January 1992.

M. Brio, Nonstrictly Hyperbolic System with Applications to Magnetohydro-
dynamics, 4th Int. Conf. on Hyperbolic Problems, Italy, March 1992.

M. Brio, One-Way Triple Point Model MHD Equations, Applied Math.
Working Seminar, University of Arizona, May 1992.

M. Brio, Triple Point Model MHD Egquations, Annual Meeting of the Cana-
dian Math. Soc., June 1992.

M. Brio, Nonstrictly Hyperbolic System with Applications to Magnetohydro-
dynamics, SIAM Annual Meeting, Los Angeles, July 1992.
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M. Brio, Triple point model MHD equations, Annual Meeting of the Cana-
dian Math. Soc., August 1993.

M. Brio, High performance computing in MHD computations, DOE High
Performance Computing Conference, Albuquerque, January 1994.

M. Brio, Weak shock Mach reflection, Fifth International Conference on
Hyperbolic Problems, June 1994.

C.D. Levermore, Hyperbolic Conservation Laws with Stiff Relazation Terms
and Entropy, Seminar, Courant Institute, New York University, December
1991.

C.D. Levermore, Hyperbolic Conservation Laws with Stiff Relazation Terms
and Entropy, Mathematics Colloquium, Arizona State University, February

1992.

C.D. Levermore, Hyperbolic Conservation Laws with Stiff Relazation Terms

and Entropy, Mathematics Colloquium, University of Michigan, March 1992. et B

C.D. Levermore, The Incompressible Navier-Stokes Limit for the Bolizmann
Equation, Colloquium, The Institute for Advanced Study, April 1992.

C.D. Levermore, The Incompressible Navier-Stokes Limit for the Boltzmann
Equation, Colloquium, Duke University, April 1992.

C.D. Levermore, Hyperbolic Conservation Laws with Stiff Relazation Terms
and Entropy, Colloquium, Universidad Nacional Automata de Mexico, May
1992.

C.D. Levermore, The Incompressible Navier-Stokes Limit for the Boltzmann
Equation, Colloquium, Universidad Nacional Automata de Mexico, May
1992. :

C.D. Levermore, The Incompressible Navier-Stokes Limit for the Boltzmann
Equation, Colloquium, Steklov Institute, Moscow, May 1992.

C.D. Levermore, Robust Fluid Dynamical Closures for the Broadwell Model,
Soc. for Indust. and Appl. Math. Annual Meeting, Los Angeles, July 1992.

C.D. Levermore, Numerical Schemes for Hyperbolic Conservation Laws with
Stiff Relazation Terms, Ocean Modeling Workshop, Los Alamos, October
1992.

C.D. Levermore. The Incompressible Navier-Stokes Limit for the Boltz-
mann Equation, Colloquium, University of California at Irvine, October

20




1992.

C.D. Levermore, Entropic Convergence and the Linearized Limit for the
Boltzmann Equation, American Math. Soc., Los Angeles, November 1992.

C.D. Levermore, Entropic Convergence and the Linearized Limit for the
Boltzmann Equation, Colloquium, Courant Institute, New York University,
November 1992.

C.D. Levermore, The Incompressible Navier-Stokes Limit for the Boltzmann
Equation, Colloquium, Duke University, November 1992.

C.D. Levermore, The Incompressible Navier-Stokes Limit for the Boltzmann
Equation, Colloquium, Georgia Tech, November 1992.

C.D. Levermore, Entropic Convergence and the Linearized Limit for the
Boltzmann Equation, Mathematical Physics Seminar, University of Arizona,
November 1992.

C.D. Levermore, Entropic Convergence and the Linearized Limit for the
Boltzmann Equation, Turbulence Seminar, University of Arizona, November
1992.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, Turbu-
lence Seminar, University of Arizona, February 1992.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, AFOSR
Contractors Meeting, Washington University, St. Louis, May 1993.

C.D. Levermore, The Incompressible Navier-Stokes Limit for the Boltzmann
Fquation, Sackler Lecture, Tel Aviv University, January 1994.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, Sackler
Lecture, Tel Aviv University, January 1994.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, Kinetic
Theory Workshop, E.N.S. Cachan, January 1994.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, Applied
Mathematics Seminar, U.C.L.A., April 1994.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, Aero-
space Colloquium, University of Arizona, April 1994.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, Meso-
scale Modeling Workshop, Mathematical Sciences Research Institute, May
1994.




C.D. Levermore, Fluid Dynamical Limits for Kinetic Theories, AMS-SIAM
Summer School, Mathematical Sciences Research Institute, June 1994.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, Hyper-
bolic Conservation Law Workshop, Stanford University, July 1994.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, Center
for Nonlinear Studies Seminar, Los Alamos National Laboratory, August
1994.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, Hyper-
bolic Conservation Law Meeting, Sanremo, Italy, September 1994.

C.D. Levermore, The Incompressible Navier-Stokes Limit for the Boltzmann
Equation, Applied Math Colloquiurn University of Colorado, January 1994.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theorzes, Math-
ematics Colloquium, Georgia Tech, December 1994.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories; Aero-
space Colloquium, University of Michigan, December 1994.

C.D. Levermore, An Introduction to Kinetic Theory, Kinetic Theory Semi-
nar, The Institute for Advanced Study, January 1995.

C.D. Levermore, Entropic Convergence and the Linearized Limit for the
Bolizmann Equation, Analysis Seminar, The Institute for Advanced Study,
January 1995.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, Math-
ematical Physics Seminar, Rutgers University, February 1995.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, Applied
Math Colloqulum Columbia University, February 1995.

C.D. Levermore, Moment Closure Hierarchies for Kinetic Theories, Apphed
Kinetic Theory Workshop, The Institute for Advanced Study, March 1995.
External Honors Including Major Prizes, Society Awards, etc.

P. Rosenau - Ulam Scholar, Los Alamos National Laboratory, Oct 1991 —
Sept 1992.
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6. Discoveries and Closing Statments

The work coming out of this effort that will have the most major impact is
the derivation of a hierarchy of closed systems of moment equations correspond-
ing to any classical kinetic theory. As was mentioned earlier, this work has,
before its publication, attracted the attention of researchers a. round the world.
Derivative work has already been submitted to6 journals from the University of
Michigan group of Gambosi, Groth, Roe, and Brown. Other work is forthcom-
ing out of Bordeaux, France by a group led by Charrier. Also note the interest
it has generated evidenced in Section 5 by collogiuum and seminar invitations.
Only time will tell if this work will live up to its promise, but the theory has so
much structurally going for it that we will certainly learn a lot by pursuing it
further.




